

**Digital Temperature 316 SS Probe** 







#### DESCRIPTION

The ATS80 sensor is digital temperature sensor with a 3 wire SPI output. The probe body is 316 stainless steel and is designed to be inserted into the media to be measured.

The 28 AWG, PTFE wires are potted with a high temperature epoxy into the housing. The terminations can be tinned or a connector can be specified.

- -40°C 150°C Operating Temperature
- $\pm 0.5^{\circ}$ C Typical Accuracy
- 0.03125°C Temperature Resolution
- Wide Supply Range: +2.7V +5.25V
- 316 Stainless Steel Housing
- 3 Wire, SPI Interface (Half Duplex)
- Media Liquid, Air, & Gas

#### APPLICATIONS

- Industrial Automation
- HVAC
- Semiconductor
- Liquid /Gas Chromatography
- Commercial Ovens

# Maximum Environmental Ratings

Operating Temperature .....-40°C to 150°C

Storage Temperature Range ..... -65°C to 160°C

| $V_{+} = 5V, V_{-} = 0V, Temperature$ | = 25°C          |      |           |     |       |
|---------------------------------------|-----------------|------|-----------|-----|-------|
| PARAMETER                             | SYMBOL          | Min  | Тур.      | Max | UNITS |
| Supply Voltage                        | Vdd             | 2.7  | 5         | 5.5 | V     |
| Operating Temperature                 | Ts              | -40  |           | 150 | °C    |
| Supply Current                        | I <sub>DD</sub> |      | 1.6       |     | mA    |
| Temperature Error                     | te              | -0.5 |           | 0.5 | °C    |
| Response Time                         | t <sub>R</sub>  | 1    | 2         | 20  | ms    |
| Update Rate                           | t <sub>U</sub>  |      | 1.2       |     | ms    |
| Temperature Resolution                |                 |      | 0.03125   |     | °C    |
|                                       | -               | SP   | Interface |     |       |
| Input Low Level                       | Vin_low         | 0    |           | .8  | Vdd   |
| Input High Level                      | $V^{in\_high}$  | 2.5  |           | 1   | Vdd   |
| Input Capacitance                     | С               |      |           | 10  | pF    |
| Output Low Level                      | Vo_low          |      |           | .4  | Vdd   |
| Output Capacitance                    | С               |      |           | 50  | pF    |

Wire Diagram

| Black  | -V   |
|--------|------|
| Red    | +V   |
| White  | INT  |
| Green  | SDAT |
| Yellow | SCLK |

## SPI – Digital Interface

### **Temperature Sensor Digital Interface – SPI**

Figure 1 shows the timing diagram for a serial read from the temperature probe. The CS line enables the SCLK input. Thirteen bits of data plus a sign bit are transferred during a read operation. Read operations occur during streams of 16 clock pulses. The first 2 bits out are leading zeros and the next 14 bits contain the temperature data. If CS remains low and 16 more SCLK cycles are applied, the temp probe loops around and outputs the two leading zeros plus the 14 bits of data that are in the temperature value register. When CS returns high, the DOUT line goes into three-state. Data is clocked out onto the DOUT line on the falling edge of SCLK.

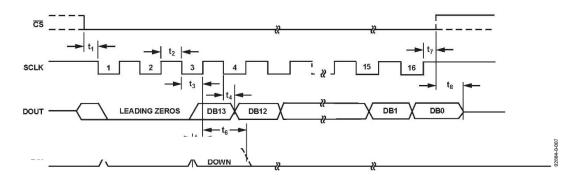


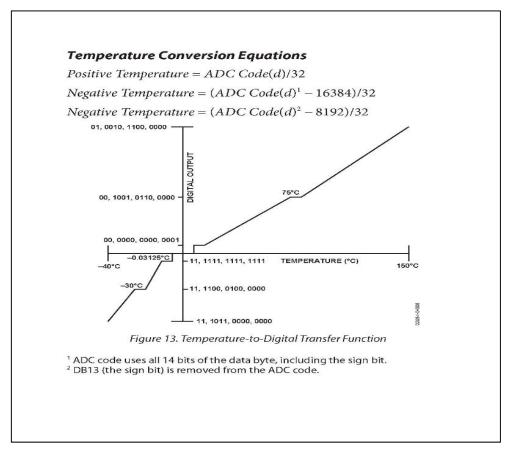
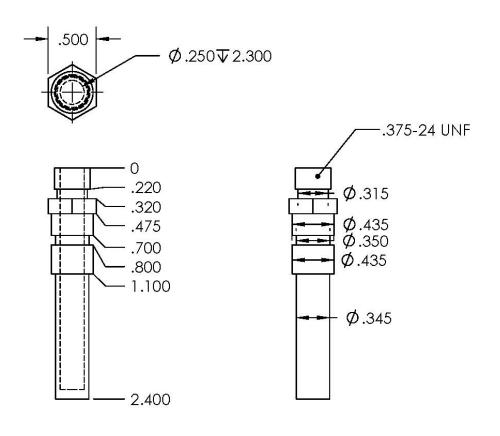

Figure 1

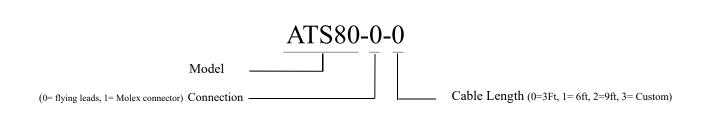
| Parameter <sup>1</sup>      | rameter <sup>1</sup> Limit |        | Comments                                  |  |
|-----------------------------|----------------------------|--------|-------------------------------------------|--|
| t,                          | 5                          | ns min | CS to SCLK setup time                     |  |
| t <sub>2</sub>              | 25                         | ns min | SCLK high pulse width                     |  |
| t <sub>3</sub>              | 25                         | ns min | min SCLK low pulse width                  |  |
| t <sub>4</sub> <sup>2</sup> | 35                         | ns max | Data access time after SCLK falling edge  |  |
| t <sub>5</sub>              | 20                         | ns min | Data setup time prior to SCLK rising edge |  |
| t <sub>6</sub>              | 5                          | ns min | Data hold time after SCLK rising edge     |  |
| t <sub>7</sub>              | 5                          | ns min | CS to SCLK hold time                      |  |
| t <sub>8</sub> <sup>2</sup> | 40                         | ns max | ns max CS to DOUT high Impedance          |  |

Table 1

### Sensor Outputs

# **Temperature Sensor Digital Interface – SPI**



Figure 2

| Temperature | Digital Output DB13 DB0 |
|-------------|-------------------------|
| –40°C       | 11, 1011 0000 0000      |
| -30°C       | 11, 1100 0100 0000      |
| –25°C       | 11, 1100 1110 0000      |
| -10°C       | 11, 1110 1100 0000      |
| –0.03125°C  | 11, 1111 1111 1111      |
| 0°C         | 00, 0000 0000 0000      |
| +0.03125°C  | 00, 0000 0000 0001      |
| +10°C       | 00, 0001 0100 0000      |
| +25°C       | 00, 0011 0010 0000      |
| +50°C       | 00, 0110 0100 0000      |
| +75°C       | 00, 1001 0110 0000      |
| +100°C      | 00, 1100 1000 0000      |
| +125°C      | 00, 1111 1010 0000      |
| +150°C      | 01, 0010 1100 0000      |





## Part Number Configuration



Notice:

AzSensCo LLC reserves the right to make changes to the product contained in this publication. AzSensCo LLC assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. While the information in this publication has been checked, no responsibility, however, is assumed for inaccuracies. AzSensCo LLC does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of a lifesupport system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications.