





- 0-150°C Operating Temperature
- 316L Stainless Steel Case and Cover
- 3.3V Power Supply
- 1ms Response Time
- Pressure/ PT100 RTD temperature read-out
- 0.25% Total Error Band
- 15 Bit Digital Output SPI
- 2Mhz Internal Clock Frequency
- 10,000 PSI Pressure Range
- Media Harsh Liquid, Air, & Gas
- 2 Week Stabilization Burn-In

#### **DESCRIPTION**

The APS300 is a pressure transducer manufactured for a high operating temperature range for the most challenging of applications. This silicon pressure transducer was designed for demanding industrial and commercial applications. The stainless-steel media isolated port design allows for pressure measurement of liquid or gas media.

The APS300 series utilizes MEMS piezo-resistive sensors pressurized on the passive backside of the SS diaphragm which has superior long-term stability and accuracy (.15% Linearity).

The design is simple and proves value for OEM customers. Please contact us for Custom design availability.

#### **APPLICATIONS**

- Mil/Aero
- Industrial Automation
- HVAC
- Automotive Engine
- Compressor
- Pneumatic

#### Maximum Environmental Ratings

 Operating Temperature
 0°C to 150°C
 Proof pressure
 3x full scale pressure

 Storage Temperature Range
 -55°C to 175°C
 Burst pressure
 5x full scale pressure

### **Application Information**

### **Package**

The one-piece body design is made of 316L stainless steel, which allows for service in high pressure applications and long-term stability.

### **Stability**

The silicon MEMS pressure sensor is welded into a 316L stainless steel media isolated housing. That in turn is mounted in the 316L stainless steel housing with the NPT port.

Additional stability is gained from a 2-week factory burn-in at 150 °C.

### **Pressure port**

NPT fittings: 1/4"-18.

**Optional Ports:** 

Autoclave: F250X

FNPT: 1/8" -27

O-Ring Seal: 7/16"-20

#### Media

The 316L media isolated pressure port is tolerant to most media including oil, air, gas, some corrosive media, and saltwater.

#### Wetted parts

The wetted surfaces are composed of 316L stainless steel.

### **Pressure Range**

The standard full-scale pressure range is 10,000 PSIA.

#### **Temperature**

Calibrated diode temperature: °C readout

### **Soldering**

The PTFE electrical connection wires for the APS300 sensor can be easily attached to a connector or soldered directly to a board.

## APS300 Digital Output Operational Characteristics

| V <sub>+</sub> = 3.3V, V <sub>-</sub> = 0V, Temperatur | re = 25°C           |       |              |          |            |
|--------------------------------------------------------|---------------------|-------|--------------|----------|------------|
| PARAMETER                                              | SYMBOL              | Min   | Тур          | Max      | UNITS      |
| Supply Voltage                                         | V <sub>DD</sub>     | 2.7   | 3.3          | 5.5      | V          |
| Operating Temperature                                  | Ts                  | 0     |              | 165      | С          |
| Supply Current (Note 1)                                | I <sub>DD</sub>     | 70    | 120          | 2500     | μА         |
| Sleep Mode Supply<br>Current                           | stdby               |       | .5           | 32       | μΑ         |
|                                                        | <u> </u>            | А     | ccuracy      |          |            |
| Total Error Band                                       |                     | -0.25 |              | 0.25     | %Full Scan |
| Non-Linearity (Note 2)                                 |                     | 01    |              | .01      | %Full Scan |
| Temperature Error (Null and Span) (Note 3)             |                     | -1    | .5           | 1        | С          |
| Response Time                                          | t <sub>R</sub>      | 1     | 2            | 20       | ms         |
|                                                        |                     | Analo | g-to-Digital | <u>'</u> |            |
| Resolution                                             | ADC                 |       | 15           |          | Bits       |
| Temperature<br>Resolution                              |                     |       | 0.1          |          | С          |
|                                                        |                     | SPI   | Interface    |          |            |
| Input Low Level                                        | Vin_low             | 0     |              | .2       | Vdd        |
| Input High Level                                       | Vin_high            | .8    |              | 1        | Vdd        |
| Output Low Level                                       | Vo_low              |       |              | .1       | Vdd        |
| Load Capacitance @SDA                                  | Csda<br>@400khz     |       |              | 200      | pF         |
| Pull-Up Resistor                                       | R <sub>I2C_PU</sub> | 500   |              |          | Ω          |
| Input Capacitance (each pin)                           | Cl2C_ln             |       |              | 10       | pF         |
| Input Capacitance (each pin)                           | CI2C_In             |       |              | 10       | pF         |

Notes: 1) Measured at zero pressure. 2) Defined as best straight line 3) Measured from 0°C to 150°C.

## Electrical Pin Configuration (Digital [SPI])

Yellow - SCLK

Green - MISO

White- INT/SS

Red - V+

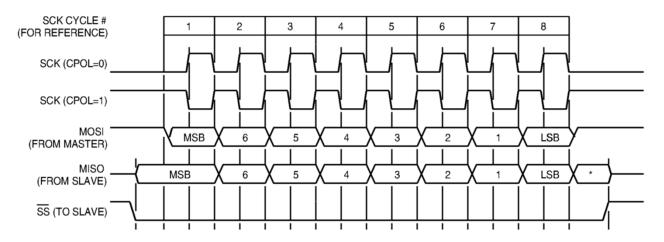
Black - GND

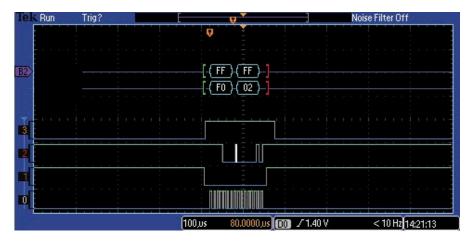
Fig. 1 Orange – MOSI

## SPI – Digital Interface

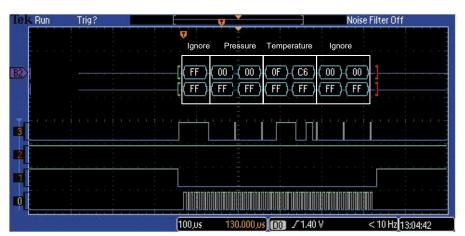
## Digital Interface – SPI

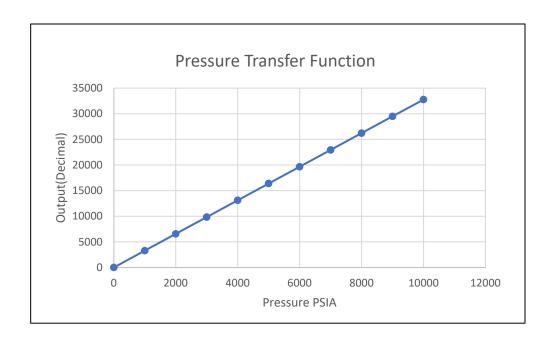
SPI Clock Speed: 125kHz
Data Order: MSB First
Clock Polarity: SCK low, idle
Clock Phase: sample trailing edge
Chip Select: CS on, idle high



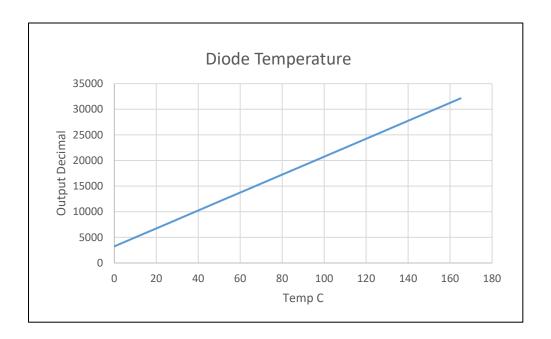


Figure 2

| Nr. | Parameter                               | Symbol                   | min                | typ | max                 | Unit | Conditions                                                        |
|-----|-----------------------------------------|--------------------------|--------------------|-----|---------------------|------|-------------------------------------------------------------------|
| 1   | SCK to internal clock frequency ratio   | fsck_clk                 |                    |     | f <sub>CLK</sub> /5 |      | f <sub>SCK</sub> must be 5 times<br>smaller than f <sub>CLK</sub> |
| 2   | MISO hold time after SCK sample slope   | tspi_HD_MISO             | 200                |     |                     | ns   |                                                                   |
| 3   | MOSI setup time before SCK sample slope | t <sub>SPI_SU_MISO</sub> | 2/f <sub>CLK</sub> |     |                     |      |                                                                   |
| 4   | /SS setup time before SCK sample slope  | t <sub>SPI_SU_SS</sub>   | 10                 |     |                     | ns   |                                                                   |
| 5   | /SS hold time after SCK sample clk      | t <sub>SPI_HD_SS</sub>   | 1/ fsck_clk*       |     |                     |      |                                                                   |

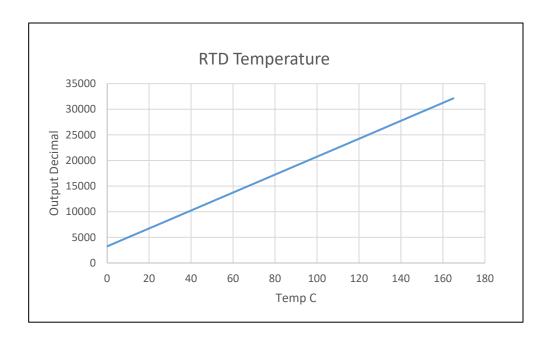

Figure 3


# Digital Interface - SPI

### Read Command Send 0x02

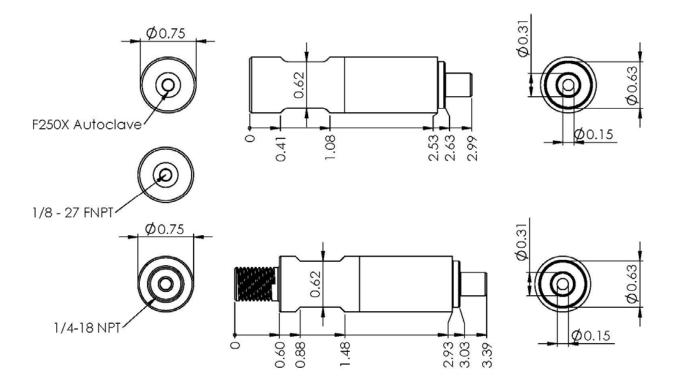



### **Data Output** CS/ (1) Pulled Low Starts Data Output






| PSI   | % Output | Decimal | Hex  |
|-------|----------|---------|------|
| 0     | 0        | 0       | 0    |
| 1000  | 10       | 3277    | CCC  |
| 2000  | 20       | 6554    | 1999 |
| 3000  | 30       | 9830    | 2666 |
| 4000  | 40       | 13107   | 3333 |
| 5000  | 50       | 16384   | 4000 |
| 6000  | 60       | 19661   | 4CCC |
| 7000  | 70       | 22938   | 5999 |
| 8000  | 80       | 26214   | 6666 |
| 9000  | 90       | 29491   | 7333 |
| 10000 | 100      | 32768   | 8000 |




| Temp C | Decimal | Hex  |
|--------|---------|------|
| 0      | 3250    | CB2  |
| 25     | 7625    | 1DC9 |
| 50     | 12000   | 2EE0 |
| 75     | 16375   | 3FF7 |
| 90     | 19000   | 4A38 |
| 100    | 20750   | 510E |
| 125    | 25125   | 6225 |
| 150    | 29500   | 733C |
| 165    | 32125   | 7D7D |



| Temp C | Decimal | Hex  |
|--------|---------|------|
| 0      | 3250    | CB2  |
| 25     | 7625    | 1DC9 |
| 50     | 12000   | 2EE0 |
| 75     | 16375   | 3FF7 |
| 90     | 19000   | 4A38 |
| 100    | 20750   | 510E |
| 125    | 25125   | 6225 |
| 150    | 29500   | 733C |
| 165    | 32125   | 7D7D |

### Mechanical Dimensions (inches)



#### Ph: (520) 858-0251 Fax: (520) 468-2475 <a href="mailto:sales@azsensco.com">sales@azsensco.com</a>

#### Notice:

AzSensCo LLC reserves the right to make changes to the product contained in this publication. AzSensCo LLC assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. While the information in this publication has been checked, no responsibility, however, is assumed for inaccuracies.

AzSensCo LLC does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of a life-support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications.