

High Temperature – 175°C Pressure Sensor

DESCRIPTION

The APS634HT is a piezo resistive pressure transducer designed for continuous high temperature applications. The 316L stainless-steel media isolated port allows for pressure measurement of harsh environments.

The APS634HT is characterized over the full operating pressure/temperature range. The data is fit to a 3^{rd} order curve and the coefficients are provided with the transducer. Typical errors are less than 0.2%.

The design is simple and proves value for OEM customers. Please contact the factory for additional pressure ranges or other modifications.

- 0-175°C Operating Temperature
- 316L Stainless Steel Absolute Pressure Sensor
- 7/16-20 UNF 3A Pressure Port, ¹/₂" Hex
- 3.3VDC Power Supply
- Pressure Out mVDC
- Temperature Out PT1000 RTD
- Coefficients for 3rd Order Curve Fit
- 0.25% Total Error Band
- 6000 PSIA Full Scale Pressure Range
- Media Harsh Liquid, Air, & Gas

APPLICATIONS

- Mil/Aero
- Industrial Automation
- Automotive Engine
- Oil and Gas Wells

Maximum Environmental Ratings

Proof pressure 3x full scale pressure Burst pressure 5x full scale pressure

Package

The one-piece body design is made of 316L stainless steel, which allows for easy integration and long-term stability.

Stability

The media isolated silicon piezoresistive MEMS pressure sensor is welded into the 316L stainless housing. This insures a reliable high-pressure seal.

Pressure port

7/16 - 20 UNF - 3A

Recommended Porting Tool:

EVEREDE 01220 7/16"-20 Port Size, SAE J1926/MS16142 Port Standard Carbide Tipped Porting Tool

Media

The 316L media isolated pressure port is tolerant to most media including oil, air, gas, some corrosive media, and salt water.

Wetted parts

The wetted surfaces are composed of 316L stainless steel.

Pressure Range

The standard full scale pressure range is 6000 PSIA. Additional FS pressures are available. Contact the factory.

Wiring

The electrical connection wires for the APS634HT sensor are PTFE 28 AWG.

Red - V+

Black – GND

Green - mVDC

Orange – PT1000 RTD Output

APS634HT Operational Characteristics

PARAMETER	SYMBOL	Min.	Тур.	Max.	UNITS		
Supply Voltage	Vdd	2.7	3.3	3.8	V		
Operating Temperature	Ts	0		175	С		
Supply Current	I _{DD}	70	120	300	μΑ		
Output Voltage – Typ.	V_{DD}	.05		2.6	mV DC		
Accuracy							
Total Error Band		-0.250		0.250	%Full Scan		
Non-Linearity (Note 2)		1		.1	%Full Scan		

 $V_{+} = 3.3V, V_{-} = 0V, Temperature = 25^{\circ}C$

_

Sensor Output

Sample Data With 3rd Order Coefficients

Linear model Poly33: $f(x,y) = p00 + p10^{*}x + p01^{*}y + p20^{*}x^{2} + p11^{*}x^{*}y + p02^{*}y^{2} + p30^{*}x^{3} + p21^{*}x^{2}y$ + p12*x*y^2 + p03*y^3 Coefficients (with 95% confidence bounds): #2022-07-13 11:54:32#,"T3",9,11 p00 = -8.434 (-30.53, 13.66) p10 = 1824 (1794, 1854) 1,26.43,14,0.0169281617 p01 = -0.1106 (-0.6439, 0.4227) 1,26.43,750,0.392733349 p20 = -0.5732 (-16.09, 14.94) 1,26.43,1500,0.778081947 p11 = 4.648 (4.383, 4.913) 1,26.43,2250,1.16377883 p02 = -0.00937 (-0.01464, -0.004098)1,26.43,3000,1.54945956 p30 = 0.9463 (-1.625, 3.518) 1,26.43,3759,1.93932619 1,26.43,4500,2.31956297 p21 = -0.1047 (-0.1569, -0.05253)1,26.43,5250,2.70370609 p12 = 0.004622 (0.003742, 0.005501) 1,26.43,6000,3.08750447 p03 = 4.499e-05 (2.698e-05, 6.299e-05) 1,60.57,14,0.0263509324 Goodness of fit: 1,60.57,750,0.373459957 1,60.57,1500,0.728143925 SSE: 385.8 1,60.57,2250,1.08221525 R-square: 1 1,60.57,3000,1.43726586 Adjusted R-square: 1 1,60.57,3759,1.79685129 RMSE: 3.32 1,60.57,4500,2.14847283 1,60.57,5250,2.50471431 1,60.57,6000,2.86152992 1,90.11,14,0.0300213751 1,90.11,750,0.355103419 1,90.11,1500,0.687293542 1,90.11,2250,1.01855777 1,90.11,3000,1.35044762 1,90.11,3759,1.68645295 1,90.11,4500,2.01511599 1,90.11,5250,2.34784548 1,90.11,6000,2.68139219 1,125.05,14,0.0412978434 1,125.05,750,0.332586393 1,125.05,1500,0.638536799 1,125.05,2250,0.945146065 1,125.05,3000,1.2523014 1,125.05,3759,1.55742189 1,125.05,4500,1.86676537 1,125.05,5250,2.1744388 1,125.05,6000,2.4829886 1,150.18,14,0.0501379703 1,150.18,750,0.319873227 1,150.18,1500,0.604026275 1,150.18,2250,0.893507063 1,150.18,3000,1.18252905

1,150.18,2250,0.893507063 1,150.18,3000,1.18252905 1,150.18,3759,1.47618145 1,150.18,4500,1.76311089 1,150.18,5250,2.05403824

Sensor Output

Example of Calculated Pressures With Errors

			Error	
Temp	Pressure	Vout	PSI	% FS
26.43	14	0.016928	-0.252463	-0.004207717
26.43	750	0.392733	1.007843	0.016797384
26.43	1500	0.778082	1.064544	0.017742392
26.43	2250	1.163779	0.500364	0.008339404
26.43	3000	1.54946	-0.294662	-0.004911038
26.43	3759	1.939326	-0.565226	-0.009420441
26.43	4500	2.319563	-0.692193	-0.011536544
26.43	5250	2.703706	-0.114956	-0.001915941
26.43	6000	3.087504	-0.509814	-0.008496893
60.57	14	0.026351	-0.392233	-0.006537215
60.57	750	0.37346	-1.403755	-0.02339591
60.57	1500	0.728144	-2.373075	-0.039551249
60.57	2250	1.082215	-0.78192	-0.013032001
60.57	3000	1.437266	0.21171	0.003528498
60.57	3759	1.796851	1.695809	0.028263483
60.57	4500	2.148473	2.338126	0.038968774
60.57	5250	2.504714	2.213243	0.036887388
60.57	6000	2.86153	-0.096296	-0.00160494
90.11	14	0.030021	1.232119	0.020535324
90.11	750	0.355103	1.765446	0.029424102
90.11	1500	0.687294	-1.165279	-0.019421321
90.11	2250	1.018558	-1.917426	-0.031957102
90.11	3000	1.350448	-2.608879	-0.043481313
90.11	3759	1.686453	-1.960129	-0.032668812
90.11	4500	2.015116	-1.50//1	-0.025128502
90.11	5250	2.34/845	0.25363	0.004227159
125.05	14	2.081392	1 520997	0.008109417
125.05	750	0.041296	4 757402	-0.023346124
125.05	1500	0.532560	3 237304	0.079291380
125.05	2250	0.945146	0.442918	0.007381972
125.05	3000	1 252301	-2 698387	-0.044973115
125.05	3759	1 557422	13 22745	0.220457561
125.05	4500	1.866765	-4.041648	-0.0673608
125.05	5250	2.174439	-2.731964	-0.04553274
125.05	6000	2,482989	-2.293281	-0.038221345
150.18	14	0.050138	-7.534829	-0.12558049
150.18	750	0.319873	-2.546524	-0.042442065
150.18	1500	0.604026	2.551794	0.042529908
150.18	2250	0.893507	-0.402374	-0.006706238
150.18	3000	1.182529	-0.694582	-0.01157636
150.18	3759	1.476181	-2.013219	-0.033553645
150.18	4500	1.763111	-1.668815	-0.027813577
150.18	5250	2.054038	-0.397657	-0.006627612
150.18	6000	2.345002	3.647308	0.06078847

Ph: (520) 858-0251 Fax: (520) 468-2475 sales@azsensco.com

Notice:

AzSensCo LLC reserves the right to make changes to the product contained in this publication. AzSensCo LLC assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. While the information in this publication has been checked, no responsibility, however, is assumed for inaccuracies.

AzSensCo LLC does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of a life-support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications.